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Abstract. Networks are commonly used to represent and analyze large and com-
plex systems of interacting elements. We build a human phenotype network (HPN)
of over 600 physical attributes, diseases, and behavioral traits; based on more
than 6,000 genetic variants (SNPs) from Genome-Wide Association Studies data.
Using phenotype-to-SNP associations, and HapMap project data, we link traits
based on the common patterns of human genetic variations, expanding previous
studies from a gene-centric approach to that of shared risk-variants. The resulting
network has a heavily right-skewed degree distribution, placing it in the scale-
free region of the network topologies spectrum. Additional network metrics hint
that the HPN shares properties with social networks. Using a standard commu-
nity detection algorithm, we construct phenotype modules of similar traits without
applying expert biological knowledge. These modules can be assimilated to the
disease classes. However, we are able to classify phenotypes according to shared
biology, and not arbitrary disease classes. We present a collection of documented
clinical connections supported by the network. Furthermore, we highlight pheno-
types modules and links that may underlie yet undiscovered genetic interactions.
Despite its simplicity and current limitations the HPN shows tremendous poten-
tial to become a useful tool both in the unveiling of the diseases’ common biology,
and in the elaboration of diagnosis and treatments.

1 Introduction

Biology at the system’s level is a holistic approach to the study of an organism’s entire
phenotypes. When applied to humans, systems biology encompasses all aspects, both
environmental and internal, of an individual to understand its traits and diseases. It of-
fers the promise of personalized diagnostics, prognostics and medical treatments [14].
Because of the sheer complexity and the number of interactions, the preferred visualiza-
tion method of systems biology is the network. Indeed, networks offer relatively straight
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forward and intuitive representations of interaction phenomena, and allow sophisticated
statistical analysis of their intrinsic properties.

In this work, we focus on the system-wide relationships between human phenotypic
traits (PT), encompassing physical attributes (e.g. eye color, waist circumference), dis-
eases (e.g. coronary heart disease, Type 1 and 2 diabetes), and behavioral characteristics
(e.g. smoking behavior). Elucidating relationships between human traits or diseases is
becoming increasingly important in the study of complex genetic disorders. These traits
are related through shared genes, proteins and possibly regulatory elements. Identifying
these links may help reveal shared mechanisms driving the set of connected diseases. Ul-
timately, a thorough understanding of these connections may provide the clinical tools
necessary to design common drug targets. The potential biological and clinical outcomes
justifies efforts to study the phenotype genotypical interactions. These interactions are
mathematically and visually represented as a graph: the Human Phenotype Network
(HPN). Previous network-based studies of diseases have proven useful for visualizing
large disease datasets grouped by common mutated genes, similar gene expression pro-
files or shared protein interactions [7,24,3]. However, a gene-centric focus has biased the
generation and interpretation of these networks, given that coding regions constitute less
than 2% of the entire human genome. Genome Wide Association Studies (GWAS) have
identified genetic predispositions to disease using a non-candidate-driven approach. To
date, approximately 6,000 single nucleotide polymorphisms (SNPs) have been reported
as genetic risk-variants for about 600 diseases and traits. Over 90% of risk-associated
SNPs (raSNPs) identified by the GWAS fall outside of coding regions ([8]), stressing
the requirement for a more global assessment of shared risk-variants. Here we propose
a non-gene centric method, relying on genetic risk factors, such as SNPS, and construct
a network of traits and diseases based on their shared GWAS loci. Previous studies also
focused on classifying diseases into arbitrary disease classes usually based on the or-
gans or the physical location of the disease in the human body, disregarding the shared
biology of the diseases. Here, we take a different approach, classifying phenotypes into
modules, by using a community detection algorithm based on the phenotypes’ position
with respect to one another within the HPN. We present a collection of clinical interac-
tions that are corroborated by the network (Fig. 1) and we show that the HPN reveals
phenotypes sharing loci that may underlie as yet uncharacterized interactions.

2 Background

In this section, we define the fundamental concepts used in the methods section to build
the HPN (Section 3);

2.1 Genome-Wide Association Studies

Genome-wide association studies (GWAS) identify common genetic variants, such as
single-nucleotide polymorphisms (SNP), found in the genotype of different individu-
als in association with phenotypical traits. A SNP is said to be associated with a trait
if it is more prevalent in the group presenting the phenotype of interest (cases), when
compared to the group not presenting it (controls). SNPs associated with a trait, or risk-
associated SNPs (raSNPs), mark the region of the human genome that is believed to
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influence the probability (or risk) of the trait’s occurrence in an individual [15]. Pairs or
groups of SNPs are said to be in linkage disequilibrium when they are found to occur
together more (or less) often than would be expected at random [6]. The catalog of pub-
lished GWAS maintained by the National Human Genome Research Institute (NHGRI)
at the National Institute of Health (http://www.genome.gov/gwastudies/)
aggregates studies that report phenotype-to-raSNP(s) associations. The NHGR catalog
used in this study, dated 05/17/11, and our primary source of raSNP-trait association
data, reports over 600 PTs associated with approximately 6,000 raSNPs.

Imputed Risk Associated Variome. For each trait in the catalog, we extract the com-
plete set of raSNPs, which we call a risk-associated variome (RAV). To address the low
genomic coverage provided by GWAS, we associate each raSNP with all SNPs found in
linkage disequilibrium (ldSNPs) [6] using the HapMap project data [9]. SNPs in linkage
disequilibrium form clusters of variants that statistically appear in the same patient. The
HapMap project aims at building a repository of describing the common patterns found
in human genetic variations (http://hapmap.ncbi.nlm.nih.gov/). The re-
sulting imputed variome (iRAV) will allow us to establish connections between dis-
eases/traits that share blocks, i.e. that have overlapping iRAVs. A recent study [25]
shows that SNPs in linkage disequilibrium (ldSNPs) with prostate cancer risk-associated
SNPs modulate the expression of an oncogene by altering transcription factor binding
sites. The inclusion of ldSNPs in our analysis is therefore expected to be valuable.

2.2 Networks

As previously mentioned, network theory can provide powerful tools for visualizing
complex systems. Networks are being used with increasing frequency to analyze large
scale systems, such as the Human Disease Network (HDN), which will be the focus
of this study. A network can take an extraordinarily complex system and reduce it to
a relatively simple form, revealing underlying connections and important clustering
details that ordinarily would not be seen, when studying individual or non-complex
relationships between traits [16]. Intuitively, a network is a collection of nodes and the
edges connecting them. The degree of a node is determined by the number of edges
that are attached to it [16]. The degree distribution of a network defines the probability
that each node will have a certain degree. The plot of the degree distribution probability
function informs us of important global properties of the network. For instance, if the
plot curve follows a normal or a Poisson distribution, then the network’s topology is
said to be random. On the other hand, if the plot is right-skewed with a long tail, this
indicates that most of the nodes in the network are of a low degree with a few highly
connected nodes that are referred to as hubs. This type of network is called scale-free
and its degree distribution tends to follow a power-law, or decaying exponential curve.
Most biological networks are found to be in the scale-free family. When the degree
distribution of a scale-free network is plotted on a logarithmic scale, the resulting curve
is approximately linear across the top [16]. In the case of relatively small networks,
it is impossible to affirm the presence of a scale-free network. We can, at best, show
the existence of a power-law type degree distribution, and not dismiss the scale-free
hypothesis.

http://www.genome.gov/gwastudies/
http://hapmap.ncbi.nlm.nih.gov/
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Modules within a Nework. The clustering coefficient (CC) of a network measures the
degree to which nodes tend to form closely knit communities with a higher than average
connectivity [23]. The CC of networks found in nature, in particular social and biological
networks, show a higher degree of clustering than that observed in randomized networks
of identical size. This measurement allows one to identify clusters of nodes within the
network that are likely to share common attributes based on the structural properties of
the network, without using any specific information about the nature of the nodes them-
selves. These clusters are called modules in the case of general networks, and commu-
nities in social networks. The Louvain method of community detection in large scale
networks, based on a greedy optimization method [5], is a widely accepted algorithm to
build communities (or modules) within a network with no expert-knowledge.

2.3 Human Disease Networks

In recent years there has been a trend toward studying disease through network based
analysis of various systems of connections between diseases. The result is the Human
Disease Network (HDN). The nodes in the HDN represent human genetic disorders
and the edges represent various connections between disorders, such as gene-gene or
protein-protein interactions, to name only a few. The HDN is helpful in visualizing
human disorders and their corresponding interactions on a large scale, which gives us
the opportunity to see the relationships between disorders. The underlying connections
of the HDN contribute to the understanding of the basis of disorders, which in turn leads
to a better understanding of human diseases.

One study by Goh, et al.[7], explored the HDN built on mutated genes shared by dif-
ferent diseases. Another study, which is similar in some ways to ours, by Li et al.[13]
traced the raSNPs connecting disease traits. In 2009, Silpa Suthram et al.[21] found that
when diseases were compared and contrasted by an analysis of disease-related messen-
ger RNA (mRNA) expression data and the human protein interaction network, there
were significant similarities between certain diseases and that some of the correlated
diseases shared drug treatments, as well. This could help us target certain genes for
treatment. In 2009, Barrenas et al.[3] further studied genetic architecture of complex
diseases, by doing a GWAS, and found that complex disease genes are less central than
the essential and monogenic disease genes in the human interactome. In the present
work, we expand our study to include not only disease traits, but also behaviors and
normal variations in humans, such as hair color, and explore large portions of non-
coding variations in the human genome. In addition, we include not only raSNPs, but
also ldSNPs to achieve a better coverage of the phenotype interactions.

3 HPN Based on Genetic Variations

This section describes our proposed method to construct a HPN of PTs and diseases
based on their shared GWAS loci. This model includes data from hundreds of GWAS
studies, all catalogued by the NHGRI, and adds the HapMap project data to build com-
prehensive clusters of rare variants for each phenotype (iRAVs). As we will show in
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Section 4, this approach offers interesting insight into the way phenotypes may be
linked by common genetic variations. The network is built following the steps below;
each step of this algorithm is represented in Fig. 1 below.

1. from the NHGR catalog, extract all PTs associated with at least one raSNP in at
least one study, and set those as nodes;

2. associate each PT with the RAV containing all the raSNPs identified;
3. extend each RAV to its iRAV by building clusters of ldSNPs around each raSNP;
4. identify overlapping iRAVs, and connect the associated PTs in the HPN with a

directed edge;
5. set the edge weight as the normalized number of iRAVs shared by the 2 PTs, i.e.

the number of overlapping iRAVs over the total number of iRAVs associated with
the source vertex of that edge;

As a result of Step (1), the network will not contain any isolated nodes. We are only
interested in PTs that have been associated with raSNPs, and their possible shared bi-
ology. The original NHGR database contains 646 PTs; by removing the isolate nodes,
the HPN contains 401 nodes connected to at least 1 other node.

NHGRI 
Catalog

PT

PT

PT

PT1

2

HapMap 
data

3

iRAV

RAV

4

PT phenotypic trait raSNP ldSNP

Fig. 1. Step-by-step description of the method to obtain the HPN. The circled numbers correspond
to the steps of the method described above.

The resulting network is shown in Fig. 2, where the nodes represent the PTs, and the
edges correspond to overlapping iRAVs. To increase the readability, nodes and edges
were filtered (see legend of Fig. 2). All the statistics below are, however, computed on
the complete (unfiltered) network.

In Fig. 2, the nodes and labels sizes are proportional to the original degree of the PT
(before filtering). The edge width is in turn proportional to the number of SNP clusters
overlapping in the nodes’ iRAVs (weight). Visually, we notice the network is com-
posed of a small number of highly connected hubs: coronary heart disease, cholesterol,
Crohn’s disease. The vast majority of the nodes are, however, very sparsely connected,
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Fig. 2. Human Phenotype Network. In order to increase the readability, we have filtered out nodes
with a degree smaller than 5 (i.e. connected to less than 5 other nodes), showing only 137 nodes
(about 30%), and edges with a weight lower than 2 (i.e. connecting PTs that have iRAVs over-
lapping by less than 2 ra/ldSNP clusters), showing about 45% of the actual edges. To further
facilitate the readability, we have manually merged a number of clearly redundant nodes and
depicted the double directed edges as single undirected.

allowing us to speculate on the scale-free nature of the network. Our hypothesis is sup-
ported by the degree distribution plots in Fig. 3. Indeed, the degree distribution is clearly
right-skewed, with a heavy-tail.

Scale-free networks are ubiquitous in nature and in biology[2], and our HPN is no
exception. Crohn’s disease and Coronary Heart disease are the main hubs of the network
with connections to over 60 other traits. They are followed by Hematological and bio-
chemical traits and LDL Cholesterol related phenotypes. Table 1 summarizes a number
of the standard network properties and statistics computed on the HPN. For comparison
purposes, we have also included the statistics of the HPN when we disregard ldSNPs,
using direct raSNP overlap only. The results are clearly in favor of including ldSNPs
into our study, as it offers a more complete view of possible phenotypic interactions.

Indeed, the complete HPN includes about 100 more traits, and about 3 times the
number of edges. The HPN’s clustering coefficient of 0.595 is much higher than that
expected of random networks (RN) of identical dimensions (CC = 0.035). The short av-
erage path length implies a large number of shortcuts across the network[22]. Moreover,
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Fig. 3. Degree distribution of the HPN. The vertical axis represents the probability (in percents)
of a node having the corresponding degree on the horizontal axis. The inset figure is plotted on a
logarithmic scale. The trend lines are shown to offer an approximation of the long-tailed function
of the distribution and show that the distribution is close to the inverted power-law function of a
scale-free distribution.

Table 1. Properties and Statistics of the HPN

Property / Statistic complete HPN raSNPs-only HPN
#nodes 401 295
#edges 2845 932

#components 9 25
largest component 385 nodes, 2837 edges 252 nodes, 989 edges

average degree 14.19 6.39
average weighted degree 37.54 10.03

average clustering coefficient 0.595 0.427
average path length 2.961 3.70

the largest connected component (LCC) is significantly smaller than the HPN, where the
LCC of a RN with a similar average degree would englobe all nodes. Together, these three
properties place the HPN in the social network range, where clusters of individuals tend to
form with a higher-than-random probability. This also hints that interesting insights can
be gained by using a clustering algorithm to identify the HPN’s intrinsic communities.
In Section 4, we discuss the results of the clustering algorithm (see 2.2), and study the
biological and clinical implications that can be gathered from the HPN.
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4 Biological and Clinical Implications

In this section, we analyze the constructed HPN and present a collection of clinical
interactions that are corroborated by the network (Fig. 4). Furthermore, the network
reveals phenotypes sharing loci that may underlie yet uncharacterized interactions. The
inclusion of behaviors and traits, as opposed to diseases only, will prove very infor-
mative. We use the Louvain method (see Section 2.2) to build the network statistics
based communities within our HPN [5]. Fig. 4 offers an overview of the network with
a color-coding of the 24 different modules identified by the algorithm. In [7], the au-
thors have manually classified the diseases present in the HDN into “disease classes”,
leaving an important number “unclassified”. Our modules based approach classifies all
genetically related phenotypes automatically into approximate classes, based on their
linkage within the HPN. This contrasts strongly with previous work, where arbitrary
disease classes grouped phenotype regardless of their shared biological attributes. For
example, in previous studies, all cancers were part of the same class, regardless of the
cancer type. Using the phenotype modules and the community detection algorithm, our
framework is able to classifies each cancer with the phenotype that they are most likely
to share genetic attributes with. Because of the large differences in the data sets, no-
tably the addition of physical and behavioral traits, we cannot directly compare the
classes used in the HDN and our HPN modules. The largest clusters appear around the
hubs: “Crohn’s disease” and “Type 1 diabetes” in Fig. 4 cluster A; “Coronary heart dis-
ease” and “Hematological and biochemical traits”, Fig. 4 cluster B; “C-reactive protein”
and “Chronic kidney disease”, Fig. 4 cluster C; “LDL cholesterol” and “Triglycerides”
(metabolic diseases); and “Type 2 diabetes” and “Obesity” (metabolic).

The HPN presents several edges that confirm well-characterized genetic interactions.
These include the dense interconnectivity between immune-related disorders and phe-
notypes. For instance, systemic sclerosis and rheumatoid arthritis, both autoimmune
disorders in the systemic inflammatory rheumatic disease family, are connected and are
part of the same module (Fig. 5B). The metabolic diseases centered around excessive
weight, elevated body mass index, obesity and Type 2 diabetes also form a module
(Fig. 5C).

The HDN also points to connections between diseases known to rely on common
factors. For instance, bone mineral density (hip and spine) is linked with inflammatory
diseases such as Crohns disease and Ulcerative Colitis, both subsets of Inflammatory
Bowel Disorder (IBD). Nuclear factor kappa B (NFκB) is known to be involved in driv-
ing IBD [10] and has recently been shown to play a role in regulating genes responsible
for bone formation [12] a key factor in establishing bone mineral density. Bone min-
eral density (hip and spine) is also connected with breast cancer (not shown here). It
is well established that the estrogen receptor alpha (ESR1) drives oncogenesis in over
two-thirds of all breast cancers [17]. Mutations in the estrogen receptor gene have also
been associated with loss of bone mineral density in humans [20]. The HDN also re-
veals connections between behavioral traits and diseases. For instance, lung cancer is
connected with smoking behavior and nicotine dependence within the same module
(Fig. 5B). This raises the possibility that a SNP associated with a certain disease pheno-
type may not affect the biology in the disease tissue but instead promote behaviors that
increase the risk of the connected disease. The HDN also shows a connection between
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Fig. 4. Network of Phenotypes. Nodes represent phenotypic traits: physical attributes, diseases
and behaviors assessed for genetic predisposition through GWAS. Node sizes are proportional to
the number of iRAVs associated with the phenotype. The edge weights are based on the number
of shared iRAVs normalized by the number of iRAVs associated with the source node. Modules
are calculated based on the Louvain method of greedy optimization. Several intuitive modules
occur, such as immunological traits or hair and skin pigmentation clusters. The most important
modules are shown according to the legend. Chosen modules A, B, and C will be focused on in
Fig. 5.

lung cancer and systemic lupus erythematosus (Figs. 5B&C). Consistent with this, it has
been shown that lupus patients show an increased risk of lung cancer [4]. Interestingly,
the over-the-counter drug cimetidine, found to significantly decrease the lung adeno-
carcinoma tumor burden compared to untreated controls in mice [19], has also been
administered to patients who develop lupus nephritis, an inflammation of the kidney
caused by systemic lupus erythematosus, to improve renal function [18]. Finally, the
HDN may help uncover biomarkers for diseases. For example, a connection between
C-reactive protein (CRP), whose levels in the blood rise in response to inflammation,
and Alzheimers disease (AD) is noted (Fig. 5C). Clinically, plasma levels of CRP re-
main normal in AD patients. However, specific polymorphisms in the regulatory regions
of the CRP gene are associated with patients at risk of developing AD [11], different
from the SNP shared by the two disease phenotypes. Our results show the implications
of disease connectivity, via shared risk-loci, which should help to better understand the
shared etiology of linked diseases. This is highlighted by the connection between CRP
and AD. CRP was recently found to be a biomarker for AD even though NFκB has
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Fig. 5. Network of Phenotypes: In Panel A, traits associated with systemic sclerosis. The connec-
tions reflect established associations of systemic sclerosis to immunological diseases and traits
clustered within the same module. In Panel B, traits associated with lung cancer. The connection
between lung cancer and systemic lupus erythematosus reflects a higher disease risk of lung can-
cer in cohorts of lupus patients which was only discovered incidentally by previous studies. In
Panel C, traits associated with the C reactive protein (CRP). Previous clinical studies have linked
CRP to diseases like coronary heart disease and Alzheimers disease.

been long known to play a role in AD development [1]. A connection between the two,
however, is seen readily in our network. Additionally, the wealth of known clinical in-
teractions between diseases and traits can be mapped to the risk-associated loci that
they share. Hence, this phenotypic network based on genetic predispositions will likely
lead to focused biological studies of diseases based on their unique or shared genetic
predispositions.

5 Discussion and Future Work

In this study, we successfully build a network of human traits based on about 6,000 ge-
netic variants of over 600 phenotypical traits. We obtain a network that is more compre-
hensive than that of previous studies by combining GWAS data, which associates PT to
raSNPs, with the HapMap project, which links raSNPs to ldSNPs. Our statistical anal-
ysis of the network properties places the HPN in the scale-free family, showing once
more how ubiquitous network structures with heavy-tailed degree distributions really
are in the biological, social, and natural networks in general. The automatic classifica-
tion of phenotypes into “phenotype classes”, using the networks topological modularity
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and a standard community detection algorithm, showed very promising results. Indeed,
in contrast to what was achieved in previous studies and manual classification, we are
able to highlight modules with phenotypes with potentially interesting shared biology,
not by arbitrary disease types (i.e. all cancers are classified together regardless of their
genetic background). Despite its simplicity, the HPN both confirmed the existence of
commonly known phenotype interactions, and also unveiled links that have neverthe-
less been characterized in recent literature. Because of these findings, we are highly
confident that the HPN, and its subsequent revisions, has the potential to become an ad-
vantageous clinical tool, both in helping to discover shared biology between PTs, and
for possible development of common target drugs. We are currently working on using
statistical methods to help us filter out the connections that are genetically and statis-
tically less probable. We would also like to include different datasets, and analyze the
overlap of a HDN using genes, pathways, and protein interactions.
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